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SUMMARY 
A finite element algorithm for solving the Navier-Stokes equations is presented for the analysis of high-speed 
viscous flows. The algorithm uses triangular elements. The unsteady equations are integrated to steady state 
with a Runge-Kutta time-marching scheme. A postprocessing artificial dissipation term is introduced to 
stabilize the computations and to dampen dissipation errors. Numerical results are compared with the 
calculation of uniform flow on a rectangular region which encounters an embedded oblique shock. A 
shock/turbulent boundary layer problem is also solved and results are compared with experimental data. It is 
shown that the postprocessing smoothing term and boundary conditions similar to the finite difference 
method work well in the present numerical studies. 
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INTRODUCTION 

The techniques for numerical solution of the equations of motion for supersonic flow range from 
finite volume techniques to finite element techniques for the Navier-Stokes equations. The main 
difference is that the finite volume method is based on surface integrals whereas the finite element 
method is based on volume integrals. 

Cooke and Blanchard' have used a Galerkin technique in conjunction with a 
predictor-corrector algorithm to solve the Navier-Stokes equations. A Lax-Wendroff type of 
time marching to get a steady state solution has been developed by Donea.' Lohner et d3 and 
Thornton et al? have solved a variety of flow situations using triangular and quadrilateral 
elements respectively with a Taylor4alerkin finite element approach. Hughes et aL5 have applied 
a Petrov-Galerkin approach for analysing computational fluid dynamics problems. Morgan and 
Peraire6 have presented an excellent description of various finite element techniques applied to the 
numerical solution of compressible flows. 

The present paper presents a finite element algorithm for the numerical solution of the 
Navier-Stokes equations employing Galerkin spatial discretization with triangular elements. A 
multistage time integration7 is used in conjunction with the Lapidus artificial dissipation model. 
The algorithm is used for the numerical calculation in Cartesian co-ordinates of uniform flow on a 
rectangular region which encounters an embedded shock with known turning angle. The results of 
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the present method are compared with Cooke and Blanchard's' solution. A shock/turbulent 
boundary layer interaction problem is analysed by solving the Navier-Stokes equations with the 
Cebeci-Smith turbulence model. Boundary conditions similar to the finite difference method are 
employed in the algorithm. Numerical results are compared with experimental data.* 

SOLUTION ALGORITHM 

The equations solved are the Navier-Stokes equations describing two-dimensional, unsteady and 
compressible flows. The solution algorithm is applied to the flow equations written in conservative 
vector form as 

au 8~ a~ 
at ax ay 
- +- +- = 0. 

The solution vector U and flux vectors E and F are given by 

u= [ p ,  pu, pv, eTIT, 

E=[pu~ p u 2 + p + Z x x ,  p u u + Z x y ,  ( e T + P + Z x x ) u + Z x y u - q x l T ,  (2) 

F=[pv ,  puv+t.x,, P ~ 2 + P + ~ y y ,  ~e ,+P+~ , , )v+~ , ,u -qy lT ,  
where p, p and eT denote the density, pressure and total energy of the fluid respectively, u and 11 are 
velocity components in the x- and y-directions respectively, zXx, z,,, and zq are stress components 
and qx and qp are heat fluxes. For a perfect gas the equation set is completed by the addition of the 
equations of state 

e, = p l +  $ p ( u 2  + u2) ,  

P = (7 - 1 ) P L  

(34 

(3b) 
where I is the internal energy. 

Sutherland's law is used to evaluate the molecular viscosity. A two-layer equilibrium eddy 
viscosity model of Cebeci and Smithg is considered in the case of shock/turbulent boundary layer 
interaction. 

Spatial discretization 

The domain V is subdivided into triangular finite elements and the approximation U* to the 
solution vector U is interpolated using Co linear shape functions. A semidiscrete system with time 
as the only independent variable can be cast by writing the Galerkin weighted residual 
statement lo 

where Ni is the linear finite element shape function associated with node i. The nodal co-ordinates 
are specified by subdividing the domain V into a number of triangular elements. For a typical 
triangular element e with nodes numbered anticlockwise as iJ, k and placed at the vertices of the 
triangle, the shape function Nf is 

NF = af + b;x +cfy, (5) 
where 
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with A" the area of element e. The Galerkin step can be thought of as a projection onto space 
spanned by the shape function such that the error is orthogonal to the space. 

Inserting linear finite element approximations for U, E and F in equation(4) results in the 
semidiscrete matrix equations 

M = { j k d  v, (7) 

where N is the global vector of shape functions (the sum of all elemental shape functions), Ei, Fi 
and dUi/dt are the nodal values of E, F and atJ f at respectively and M is a consistent mass matrix. 
In the numerical implementation the mass matrix M is replaced by the lumped mass matrix M, in 
which each diagonal entry is the sum of all elements in the corresponding row of M. This allows 
equation (6) to be solved explicitly. This does not change the steady state solution but does modify 
the time stability of the algorithm slightly. 

Initial and boundary conditions 

Oblique shock pow. The computational domain and triangular grid for the oblique shock 
calculation are shown in Figure 1. Uniform flow conditions are prescribed on the inflow and prior 
to the point of occurrence of the shock between nodes A and B on the top boundary including 
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Figure 1. Oblique shock computational domain and grid 
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point B. Along the remainder of the top boundary, fixed post-shock values corresponding to flow 
having been turned by a shock at an incidence angle of 23" are prescribed.' Computational 
boundary conditions are applied along the bottom and outflow boundaries: zero normal gradient 
along the bottom and linear extrapolation on the outflow. 

Shock/turbulent boundary layer interaction. This case consists of a supersonic stream at the 
inflow and outflow boundaries. The initial flow field and boundary conditions are shown 
schematically in Figure 2. The computational domain is chosen such that the reflected shock wave 
from the wall does not intersect the top boundaries and the flow is sufficiently well developed after 
leaving the interaction region. Hence it is appropriate to satisfy all variables at the inflow and top 
boundaries. The flow variables at the top mesh boundaries were set to either freestream values or 
values for a given shock strength so that the shock wave would impinge on the plate surface at the 
lower boundary at a given point. Linear extrapolation from interior points is used for the variables 
at the outflow. The lower surface was either a plane of symmetry or a wall surface and reflective 
boundary conditions were employed. The freestream was supersonic, therefore the values at the 
upstream boundary were held fixed. No slip and isothermal wall conditions are applied at the flat 
plate. To determine the density along the wall, a commonly used approximation is employed, 
namely 

31 =o or pw=pw+l .  
aY w 

For our present case the first mesh point is close to the wall so this pressure condition is 
appropriate." The density p is then determined from the equation of state (3b). 

Time marching 

To integrate equation (5),  the following multistep time integration scheme7 is used at time 
level n: 

Ui" = Ul+$A(At i /MLi)Ri(U") ,  

UIZ) = Ul +3A(Ati/MLi)Ri(U'"),  

U!3)=  U l  + iA(At i /MLi)Ri(U'Z' ) ,  

U!4)= U l  +A(Ati/MLi)Ri(U'3'), 
u;+'=u14)+ 6, 

"1 . P, 3 Pf 

UNIFORM FLOW 

Figure 2. Initial flow field for shock/boundary layer interaction 

(9) 
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where R , O  is the right-hand side of equation ( 5 )  with fluxes based on the state vector U, is a 
smoothing term and 3, is the CFL number. For a time-marching scheme 3, must be less than 2J2. 
Local time stepping is used to accelerate convergence to steady state. The boundary conditions are 
satisfied pointwise in a postprocessing procedure. 

Smoothing 

To prevent oscillations in the vicinity of a discontinuity, the computed Un+I needs to be 
smoothed before proceeding to the next step. An artificial dissipation form due to Lapidusl2 is 
convenient to implement because it uses variables easily computed from conservation variables. 
The viscous flux components E, and F, are used in the following form: 

where K is an adjustable dissipation parameter and A, is the element area. 

NUMERICAL PROCEDURE AND RESULTS 

Oblique shock $ow 

A test case of oblique shock flow is considered to validate the algorithm. Table I gives the test 
conditions used to simulate the introduction of the shock between grid points on the upper 
boundary. The computations were performed on a CDC CYBER 170/730 digital computer. A 
uniform 41 x 31 grid is chosen for computational purposes as depicted in Figure 1. A Prandtl 
number Pr = 0-72, Reynolds number Re = 80,869 and freestream Mach number M = 3.0 are used in 
the flow simulations. The criterion for convergence of calculation used herein is 

I Pn+ 1 - P n  I 
where n is the iteration index. The density ratio across the shock and the streamwise and normal 
velocity profiles are given in Figures 3(a)-(c) respectively. The pressure contours over the 
computational domain are displayed in Figure 4. 

By drawing a straight line at 23" angle of incidence and intersecting the top boundary at 
x=O.1667, the interaction of this line with the grid lines x = x i  should yield a y-value in close 
proximity to the theoretical shock jump location. The horizontal lines in Figure 3(a), in which the 
density ratio across the shock is plotted, indicate this location. The calculations of the present 
analysis exhibit good agreement with the numerical results of Cooke and Blanchard' and also 
with the theoretical shock jump location. 

Table I. Conditions for oblique shock simulation 

Uniform flow conditions Post-shock conditions 

M = 3-0 2,75799 
p= 1.0 1.29341 
u=1-0 096537 

T= 019841 022034 
u = 0 0  - 0.08 159 
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Figure 3. Oblique shock FEM computational results 
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Figure 4. Oblique shock pressure contuurs 

Shocklturbulent boundary layer interaction 

The Reynolds-averaged Navier-Stokes equations (1) are solved using a Galerkin- 
Runge-Kutta procedure. The impinging planar shock strikes the flat plate at an angle of 23" at a 
freestream Mach number M = 3.7, Reynolds number Re/m = 8.202 x lo6 and a wall-to-stagnation 
temperature ratio Tw/T'=045. The total number of grid points is 42 x 42 and approximately 
50% of the mesh points are spanned by the boundary layer. The computational mesh consists of a 
fine mesh, exponentially stretched inner region in order to increase the concentration of grid 
points near the wall, and a coarse uniform outer mesh. The present computation was performed 
on a CDC CYBER 170/730 digital computer for which 131K memory was made available to the 
user. The convergence criterion required to obtain a steady state solution was considered as 
mentioned above. This convergence criterion is achieved in approximately 2 h of computer time. 

Distributions of the disturbed pressure and heat transfer coefficient normalized by undisturbed 
quantities, (P2/P1 and h&), are given in Figures 5 and 6 respectively. The comparisons of the 
computational results with the experimental data of Back and Cuffel' show good agreement. The 
capability of the algorithm has thus been demonstrated; however, room for improvement still 
exists. 

CONCLUSIONS 

A finite element procedure using triangular elements with a multistep Galerkin-Runge-Kutta 
time-marching algorithm has been used to model shock/turbulent boundary layer interaction 
flows. A postprocessing smoothing term and boundary conditions similar to the finite difference 
method are used in the algorithm. The disturbed pressure and heat transfer coefficient show good 
agreement with the experimental data of Back and Cuffel.' The procedure indicates good 
potential for aerothermal load prediction in the design of high-speed vehicles. 
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Figure 5. Comparison of computed and measured surface pressure distributions 
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Figure. 6. Comparison of computed and measured heat transfer coefficients on the surface 
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